

Unit II

What is a Firewall?

A Firewall is a network security device that monitors and filters incoming and outgoing network

traffic based on an organization’s previously established security policies. At its most basic, a firewall

is essentially the barrier that sits between a private internal network and the public Internet. A

firewall’s main purpose is to allow non-threatening traffic in and to keep dangerous traffic out. A

firewall is a network security device that monitors incoming and outgoing network traffic and decides

whether to allow or block specific traffic based on a defined set of security rules.

Types of Firewalls

A firewall can either be software or hardware. Software firewalls are programs installed on each

computer, and they regulate network traffic through applications and port numbers. Meanwhile,

hardware firewalls are the equipment established between the gateway and your network.

Additionally, you call a firewall delivered by a cloud solution as a cloud firewall.

There are multiple types of firewalls based on their traffic filtering methods, structure, and

functionality.

A firewall welcomes only those incoming traffic that has been configured to accept. It distinguishes

between good and malicious traffic and either allows or blocks specific data packets on pre-

established security rules. These rules are based on several aspects indicated by the packet data, like

their source, destination, content, and so on. They block traffic coming from suspicious sources to

prevent cyberattacks. Firewalls are designed with modern security techniques that are used in a wide

range of applications. In the early days of the internet, networks needed to be built with new security

techniques, especially in the client-server model, a central architecture of modern computing. That's

where firewalls have started to build the security for networks with varying complexities. Firewalls

are known to inspect traffic and mitigate threats to the devices.Firewalls are appliances that protect

networks against external intrusion by screening incoming data and admitting or excluding

traffic. Packet filtering firewalls achieve this goal by applying security rules to data packets.

A packet filtering firewall

A packet filtering firewall is a network security device that filters incoming and outgoing network

packets based on a predefined set of rules. Packet filtering relies on the IP packet header

information and information about the firewall appliance, such as the following:

• Source IP address.Destination IP address.Source port.Destination port.Network protocol.

• IP flags.Firewall interface.Direction, ingress or egress.

Rules are typically based on IP addresses, port numbers, and protocols. By inspecting packet headers,

the firewall decides if it matches an allowed rule; if not, it blocks the packet. The process helps

protect networks and manage traffic, but it does not inspect packet contents for potential threats.

This type of firewall operates at a fundamental level by applying a set of predetermined rules to each

network packet that attempts to enter or leave the network. These rules are defined by the network

administrator and are critical in maintaining the integrity and security of the network.

Packet filtering firewalls use two main components within each data packet to determine their

legitimacy: the header and the payload.

The packet header includes the source and destination IP address, revealing the packet's origin and

intended endpoint. Protocols such as TCP, UDP, and ICMP define rules of engagement for the

packet's journey. Additionally, the firewall examines source and destination port numbers, which are

similar to doors through which the data travels.

Certain flags within the TCP header, like a connection request signal, are also inspected. The direction

of the traffic (incoming or outgoing) and the specific network interface (NIC) the data is traversing,

are factored into the firewall's decision making process.

Packet filtering firewalls can be configured to manage both inbound and outbound traffic, providing a

bidirectional security mechanism. This ensures unauthorized access is prevented from external

sources attempting to access the internal network, and internal threats trying to communicate

outwards. A primary packet filtering firewall use case is the prevention of IP spoofing attacks, where

the firewall examines the source IP addresses of incoming packets. By ensuring the packets originate

from expected and trustworthy sources, the firewall can prevent attackers from masquerading as

legitimate entities within the network. This is particularly important for perimeter defences.In addition

to security, packet filtering firewalls are used to manage and streamline network traffic flow. By

setting up rules that reflect network policies, these firewalls can limit traffic between different subnets

within the enterprise. Limiting traffic between different subnets helps contain potential breaches and

segment network resources according to departmental needs or sensitivity levels.

A firewall works as a network gateway and provides a protective wall over a network. Access

through a firewall requires an authorization to then access the network.The initial process for most

firewalls involves installing a software to a user computer or over a network which initiates an access

control policy on that network. Some firewalls are primarily for prevention of the flow of traffic,

while some are primarily for easing the flow of traffic. Firewalls are of great importance in our

present digital world, due to the surge of cyber-security concerns.

What can a firewall do?

A firewall can protect a network from unauthorized interactive access from the outside world. A

network is guarded from strangers and unauthorized users.

A firewall can protect a network from external traffic, but can let authorized users have access with

unhindered communication. In hardware terms, a firewall can protect the network against network-

borne attacks when unplugged.

A firewall can protect users from an attacker who tries to connect a new application to the device

while in use on the internet. It queries the user’s consent on this particular scenario. It also protects a

user from an attacker trying to connect to an application that has not been captured on the filter rule

stored on the firewall.

What a firewall protects a user from

Default setting

Some user systems come with certain pr-installed applications which can be accessed remotely. These

applications could be seen as factory set applications. The remote access possibility of these

applications creates room for intrusion of malicious codes into the application, which could cause

harm on the user side. A firewall can be installed for applications to go through packet filtering each

time data packets arrive remotely into the user systems.

Cyber attacks

Cyber-security attacks like denial of service (DOS) are very popular in current times. Most strangers

can make a network server inaccessible by flooding the server with multiple access requests. This

would reduce the server performance and could cause a breakdown. But when a firewall is installed,

such attacks could be detected and hindered so as to stop a breakdown of the server.

Malicious spam

Firewalls can prevent users from falling prey to spam links, mail, and messages. The spam messages

create an open door for hackers to steal important information from users. Firewalls sieve this spam

mail and blocks them so that users will not fall prey to them.

Viruses

Viruses could be very dangerous to a user, as they tend to compromise the user data and storage. Most

times, the viruses keep increasing until the user is locked out of the system. Firewalls protect against

viruses, and using anti-virus alongside firewalls can protect a computer totally.

Macros

Macros exist, like scripts, which help applications make complicated processes simple. A hacker can

possibly inject their own macro to run in their own preference, so as to gain control of user

applications. This can be observed and stopped by a firewall if put in place to defend the system.

Packet Filter vs. Firewall

Throughout this book, the terms firewall and packet filter are used rather interchangeably. Firewalls

and packet filters generally perform the same function. Packet filters inspect traffic based on

characteristics such as protocol, source or destination addresses, and other fields in the TCP/IP (or

other protocol) packet header. Firewalls are packet filters, but application layer firewalls may examine

more than just packet headers; they may examine packet data (or payloads) as well. For example, a

packet filter may monitor connections to ports 20 and 21 (FTP ports), whereas a firewall may be able

to establish criteria based on the FTP port numbers as well as FTP payloads, such as the PORT

command or filenames that include the text passwd. A web application firewall (WAF) watches

incoming connections for tell-tale signs of SQL injection attacks and outbound traffic for sensitive

information being leaked from the web app.

Normally, the term packet filter refers to software that makes decisions based on protocol attributes:

addresses, ports, and flags. Packet filtering provides coarse (but effective) security to a network

routing device. However, the software is simplistic because the access control is limited to a handful

of protocols like TCP/IP, UDP, and ICMP. The term firewall is usually reserved for software or

devices whose primary purpose is to apply security decisions to network traffic.

Sometimes you may also hear the phrase intrusion-prevention system (IPS). This usually

refers to hardware and software that combines packet filtering, content filtering, intrusion-

detection system (IDS) capabilities, and other security functions. For example, alerts from an

IDS would automatically trigger certain firewall rules. Before you resort to trying to tackle a

commercial IPS, determine whether using a firewall, keeping your systems fully patched on a

regular basis, and perhaps using an IDS such as Snort (covered later in this chapter) provides

sufficient protection for your system. If you find that you need extra security measures, then

look into a commercial IPS.

How a Firewall Protects a Network

Firewalls are only as effective as the rules they’re configured to enforce. As mentioned previously,

firewalls examine particular characteristics of network traffic and decide which traffic to allow and

deny based on some criteria. It is the administrator’s job to define rules so that the firewall

sufficiently protects the networks—and information— behind it without negatively impacting

legitimate traffic. Most firewalls have three ways to enforce a rule for network traffic:

• Accept the packet and pass it on to its intended destination.

• Deny the packet and indicate the denial with an Internet Control Message Protocol (ICMP)

message or similar acknowledgment to the sender. This provides explicit feedback that such traffic is

not permitted through the firewall.

• Drop the packet without any acknowledgment. This ends the packet’s life on the network. No

information is sent to the packet’s sender. This method minimizes the sender’s ability to deduce

information about the protected network, but it may also adversely impact network performance for

certain types of traffic. For example, a client may repeatedly attempt to connect to a service because it

hasn’t received an explicit message that the service isn’t available.

Most firewalls drop packets as their default policy for traffic that isn’t permitted. When building a

ruleset, start with the concept of least privilege or deny all. It’s safer to start with a firewall that

rejects every incoming connection and open only the necessary holes for services you want to expose,

rather than to start with an open firewall that exposes all of your network’s resources.

Packet Characteristics to Filter

Most firewalls and packet filters have the ability to examine the following characteristics of

network traffic:

• Type of protocol (IP, TCP, UDP, ICMP, IPSec, etc.)

• Source IP address and port

• Destination IP address and port

• ICMP message type and code

• TCP flags (ACK, FIN, SYN, etc.)

• Network interface on which the packet arrives

For example, if you wanted to block incoming ping packets (ICMP echo requests) to your

home network of 192.168.1.0/24, you could write something like the following rule. (Don’t worry

about the specific syntax yet—we’ll get to that shortly.) The important components of the rule

are the action (deny), the packet attributes (ICMP protocol, specifically “ping” types), the

direction of the rule (packets “from” one source “to” another), and the type of source (a network

address range like 192.168.1.0/24).

deny proto icmp type 8:0 from any to 192.168.1.0/24

Or if you wanted to allow incoming web traffic to 192.168.1.50 but deny

everything else, you would create two rules. The first one would specify the direction

of web traffic to a specific TCP port on a specific host. The second one would make

sure all other traffic is denied. Those rules would look like the following:

allow proto tcp from any:any to 192.168.1.50:80 deny proto

all from any to 192.168.1.0/24

 Make sure you understand the order in which your firewall interprets rules. One firewall may

take a “first match” approach that permits (or denies) a packet as soon as it encounters a

matching rule. A “last match” firewall may traverse every rule and apply the final, most

specific match to a packet. Consider how a rule like allow any any (unrestricted packet flow)

would behave in these two scenarios.

You can also use a firewall to protect your network from IP spoofing. For example,

imagine your firewall’s external interface (called eth1) has an IP address of 10.0.0.1

with a netmask of 255.255.255.0. Your firewall’s internal interface (called eth0) has an

IP address of 192.168.1.1 with a netmask of 255.255.255.0. Any traffic from the

192.168.1.0 network destined to the 10.0.0.0 network will come in to the eth0 interface

and go out of the eth1 interface, as shown in the following illustration.

Conversely, traffic from the 10.0.0.0/24 network destined for the 192.168.1.0/24 network will

come in to the eth1 interface and go out of the eth0 interface. Therefore, you should never see

traffic with a source address in the 192.168.1.0/24 range coming inbound on the eth1

interface. If you do, it means someone on the external 10.0.0.0/24 network is attempting to

spoof an address in your local IP range. Your firewall can stop this kind of activity by using a

rule like the following:

deny proto any from 192.168.1.0/24 to any on eth1

The previous rule may seem ambiguous. Might it match legitimate traffic coming from

192.168.1.0/24 heading out to the external network? It could, but it depends on the firewall’s

interpretation of the syntax. Since we’re using a fictional firewall rule syntax for these

examples, this rule remains ambiguous and possibly ineffective. This illustrates an important

point: You have to be very careful when writing firewall rules. Simply knowing what you are

trying to block isn’t sufficient; you must verify that the rule works as expected.

For example, a ruleset might be interpreted in a linear manner, a ladder of sorts in

which a packet moves from one rule to the next in order until it is accepted or denied.

Another firewall might merge rules into a set of overlapping controls in the manner of a Venn

diagram. You have to make sure that you understand how the firewall applies rules and what its

default or assumed behavior might be. In the antispoofing example, we rewrite the rule with less

ambiguity by specifying the network interface on which it should be applied:

deny proto any from 192.168.1.0/24 to any in on eth1 allow proto any from

192.168.1.0/24 to any out on eth1

The combination of these two rules clearly indicates our intention. We’ll talk more about

writing good firewall rules later in this chapter.

Stateless vs. Stateful Firewalls

Chapter 9 showed you how tools such as Nmap can be used to determine whether a firewall is stateful

or not. We’ll review those concepts here. A stateless firewall examines individual packets in isolation

from each other; it doesn’t track whether related packets have arrived before or are coming after. A

stateful firewall places that packet in the context of related traffic and within a particular protocol,

such as TCP/IP or FTP. This enables stateful firewalls to group individual packets together into

concepts like connections, sessions, or conversations. Consequently, a stateful firewall is able to filter

traffic based not only on a packet’s characteristics, but also on the context of a packet according to a

session or conversation. For example, a TCP ACK packet will be denied if the protected service

hasn’t set up the SYN and SYN-ACK handshake to establish a connection.

Stateful firewalls also allow for more dynamic rulesets. For example, suppose a system on the internal

192.168.1.0/24 network wanted to connect to a web server on the Internet. The following steps

demonstrate the drawbacks of trying to apply simple packet inspection to the traffic. The first step

establishes a rule for TCP traffic from the 192.168.1.0/24 network to port 80 on any IP address. allow

proto tcp from 192.168.1.0/24:any to any:80 out on eth1

So far, so good. But what happens when the web server responds? We need to make sure the response

packet gets accepted by our firewall. Unfortunately, since the web browser’s system chooses a port at

random to receive traffic, we won’t know which destination port to open for the response until after the

connection starts. The only thing we know for certain is that the web server’s response packet will have

a source port of 80. Consequently, we might try a rule that allows any web traffic (e.g., TCP port 80)

from the Internet to reach our internal network: allow proto tcp from any:80 to 192.168.1.0/24:any

in on eth1

This allows the web server’s response to reach any host on the internal network at the expense of

opening a gaping hole in the firewall. The rule assumes that only return web traffic would be using a

source port of 80. However, as we have seen in other chapters, TCP services and connections use

specific port numbers by common agreement, not by technical restrictions.

If a hacker were aware that any packet with a source port of 80 could pass through the firewall, they

could use port redirection to set up a tunnel (see Chapter 8) to do something as simple as scan for ports

or as (only slightly less) simple as tunnel traffic for a remote shell. The tunnel would forward any

traffic it received to a machine on the 192.168.1.0 network, substituting 80 for the packet’s source port

in order to traverse the firewall rule. For a stateless firewall, a rather weak protection against this

scenario is to restrict incoming traffic to the ephemeral ports used by TCP clients, as follows: allow

proto tcp from any:80 to 192.168.1.0/24:1024-65535 in on eth1

The operating system’s network stack chooses a random port as the source of its traffic, whereas the

destination port for something like an HTTP service is 80 by default. This rule improves on the

stateless protection, but it still leaves a large, unnecessary hole in the firewall.

Wouldn’t it be better if the firewall could instead remember the details of our outgoing connection?

That way, we could say that if the initial outgoing packet is allowed by the firewall, any other packets

that are part of that session should also be allowed. This dynamic rule prevents us from having to

poke potentially exploitable holes in our firewall. This is the advantage of stateful firewalls. Some of

this concept was demonstrated in Chapter 10 in the review of the hping tool.

Network Address Translation (NAT) and Port Forwarding
Networking devices, whether a consumer-level wireless access point or an enterprisegrade firewall, are

the gateways between networks. They separate external networks like the Internet from private networks

like those used by the systems in your home. Systems on the Internet must have unique, public (i.e.,

“routable”) IP addresses. This ensures that packets for a web site or a gaming server always go to the

right destination. If the same public IP address were permitted to be used for different, unrelated servers,

then traffic control would be a nightmare of congestion and security problems.

This chapter focuses on IPv4, which remains the predominant IP protocol on the Internet

despite efforts over the past decade to move large networks onto IPv6. A major difference

with IPv6 is that the address space is so large that there is no need for an equivalent RFC

1918 address space—we’ll run out of humans, devices, and planets before we exhaust the

IPv6 address space. Regardless of protocol differences, the fundamental concepts of

firewalls and monitoring remain similar enough to avoid the need for protocol nuances in

this chapter.

Internal networks, on the other hand, use “nonroutable” IP addresses, referred to as private or RFC

1918 addresses. RFC 1918 refers to the document that explicitly defines the address space of the

following networks:

• 192.168.0.0 through 192.168.255.255 (written 192.168.0.0/16 or 192.168.0.0/255.255.0.0)

• 172.16.0.0 through 172.31.255.255 (written 172.16.0.0/12 or 172.16.0.0/255.240.0.0)

• 10.0.0.0 through 10.255.255.255 (written 10.0.0.0/8 or 10.0.0.0/255.0.0.0)

The Internet Assigned Numbers Authority (IANA) reserved those IP address blocks for private

networks. This enables organizations large and small to build networks whose traffic will not leak onto

the Internet unless it passes through a gateway device like a router or firewall. Internet traffic should

never accommodate packets whose source contains an RFC 1918 address. It also means that

organizations are free to use addresses within these networks without worrying about whether other

networks are using the same IP addresses. (That is, until they start trying to tie networks together with

VPNs or similar links—but those are network design problems for a different book.)

RFC 5737 defines network address ranges for use in documentation. These are

guaranteed to be “empty” and nonroutable more so than the RFC 1918 ranges. Should

you write about networking but wish to avoid using the overly familiar private IP ranges in

examples, consider the networks 192.0.2.0/24 (TEST-NET-1), 198.51.100.0/24 (TEST-

NET-2), or 203.0.113.0/24 (TEST-NET-3).

The ability for organizations to independently use the same private network addresses reduces the risk

of running out of unique addresses for the millions and millions of devices on modern networks. This

address scarcity problem will be solved when IPv6 is more universally adopted because IPv6

exponentially expands the available address space. (IPv4 supports about 4 billion devices theoretically

due to its 32-bit address field, but much of that space cannot be used for practical addressing. IPv6

uses a 128-bit address field, enough for roughly 3.4 × 1038 unique devices. We’ll run out of funny cat

videos and Doctor Who episodes long before we need to worry about running out of IPv6 addresses.)

The “nonroutable” nature of private address spaces poses a problem once a device needs to access the

Internet. The addresses are fine for syncing your stereo with your music collection stored on the local

network, but they won’t work when your device with address 10.0.1.42 needs to retrieve music from

storage on the Internet. The music storage service needs to know the difference between your device

using the 10.0.1.42 address and someone else’s device using the same private IP address on their private

network.

Network Address Translation (NAT) solves this routing problem by translating packets from private

to public addresses. NAT is usually performed by a networking device on its external interface for the

benefit of the systems on its internal interface. A NAT device allows machines on its private, internal

network to masquerade as the IP address assigned to the NAT device. Private systems can

communicate with the Internet using the routable, publicly accessible IP address on the NAT device’s

external interface.

When a NAT device receives traffic from the private network destined for the external network

(Internet), it records the packet’s source and destination details. The device then rewrites the packet’s

header such that the private source IP address is replaced with the device’s external, public IP address.

Then the device sends the packet to the destination IP address. From the destination system’s point of

view, the packet appears to have come directly from the NAT device. The destination system

responds as necessary to the packet, sending it back to the NAT device’s IP address.

When the NAT device receives the response packet, it checks its address translation table to see if the

address and port information of the packet match any of the packets that had been sent out. If no

match is found, the packet is dropped or handled according to any firewall rules operating on the

device. If a match is found, the NAT device rewrites the packet’s destination IP address with the

private IP address of the system that originally sent the packet.

Finally, the NAT device sends the packet to its internal destination. The network address translation is

completely transparent to the systems on the internal, private IP address and the Internet destination.

The private system can access the Internet, but an Internet system cannot directly address it.

If you’re having trouble visualizing what’s going on, perhaps the following illustration will help:

NAT has a few limitations with regard to the kinds of traffic it may successfully translate. The packet

header manipulation will interfere with any protocol that requires the use of true IP addresses, such as

IPSec. Also, any protocols that require a separate, reverse incoming connection, such as active mode

FTP, will not work. The outgoing FTP control connection to the FTP server will make it through the

NAT device just fine, but when the FTP server attempts to establish the data connection, the NAT

device won’t know what to do because it doesn’t have a corresponding entry in its translation table.

NAT’s prevalence has influenced people to create workarounds to resolve these limitations.

In the end, NAT has become integral to firewalls and network security. It provides an added layer of

security to a firewall appliance, as it not only protects machines behind its internal interface, but also

hides them. But what happens if you decide you’d like to expose a particular service on your private

network to the Internet? What if you wanted someone across the country to be able to look at something

you had posted on your internal web server?

For this, you can use a technique called port forwarding (just like the concepts covered in Chapter 8).

The NAT device may forward traffic received on a particular port on the device’s external interface to

a port on a system on the private, internal network. A remote system on the Internet that connects to

the NAT device on this port effectively connects to the port on the internal system and only needs to

know the public IP address of the NAT device.

This is all well and good, but now you’ve made your private network a little less private by exposing

the service listening on that port. Now anyone on the Internet can access your internal web server by

connecting to the port on your NAT device. If your NAT device is a firewall, you can use firewall

rules to limit which IP addresses are allowed to access it. While this is more secure, you’re still

relying solely on IP-based authentication. On many occasions, users who have built fortified, private

networks may find it necessary to open up internal network resources to another remote facility.

There are many ways to restrict access from that remote facility and prohibit the rest of the Internet.

But do we really want to forward dozens of ports and open dozens of holes in our firewall, or dozens

of rules and exceptions? This is where Virtual Private Networks come into play.

The Basics of Virtual Private Networks
Virtual Private Networks (VPNs) are a complex subject in terms of identity, authentication, and

encryption. We touch on them here because so many firewall and networking devices provide some

degree of VPN capability. In essence, a VPN establishes an encrypted channel between two networks

(or single systems, or a combination thereof) that is overlaid on a public network. It’s designed to

mitigate the impact of using a hostile network like a public Wi-Fi connection where data may be sniffed

or intercepted by an attacker. The VPN’s encrypted traffic is meant to be opaque to anyone who tries

to monitor or interfere with it. The VPN provides confidentiality and integrity.

A VPN server requires a remote client to authenticate to it before it will connect the remote client to

the protected network. A VPN extends the boundaries of a network, which creates a mixed sense of

security. On the one hand, the client now has a protected channel into another network. On the other

hand, the network has a new ingress point and must trust that the client neither has malicious intent

itself nor is compromised by an attacker and used as a relay to the network. Authentication at least

creates a barrier to access and helps provide an audit log for access. As with any authentication point,

it’s important to use strong credentials (complex passwords or token-based solutions) to prevent brute-

force guessing attacks from successfully compromising an account.

VPNs usually forward all traffic (or as much traffic as desired) between the networks over a single set

of ports. Imagine how many port forwards and firewall rules you’d have to write if you had to open up

several internal network resources to a remote location? File sharing, printer sharing, code repositories,

web sites, and other services would create a NAT and port forwarding configuration nightmare.

By combining the capabilities of a firewall, a NAT device, and a VPN in one network device, you can

greatly improve the external security of your internal network without losing convenience or

productivity.

Linux System Firewall
All Linux distributions rely on the kernel’s netfilter software to provide firewall capabilities (plus

NAT and other network wrangling activities). Netfilter is part of the kernel. You can find the project’s

home at http://netfilter.org. The command-line interface for administering netfilter rules is the

iptables command. The following example shows what may be the default rules for your system:

$ sudo iptables --list

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

The iptables command fits in very well with the Linux philosophy of empowering the user to

make their own decisions and give them complete control over their system. The drawback for novice

users is that commands may be difficult to learn and clunky to use depending on the syntax they

expect.Netfilter builds tables of rules based on chains. As you saw in the previous example, the

iptables command lists the three default chains for netfilter: INPUT, FORWARD, and OUTPUT.

These chains reflect the direction of traffic into or out of the network interface monitored by netfilter.

The FORWARD chain is a special case for supporting NAT.

The following example shows how to change the default stance of the firewall from accepting all

connections to limiting incoming connections to the SSH service on port 22. The key points to notice

are the -A option that appends a rule to the INPUT chain and the -j option that tells netfilter which

rule target to jump to. In this case, we tell netfilter to jump to accepting any traffic with a destination

port of 22. This way it doesn’t have to spend time checking the packet against other rules that might

be redundant. The final rule in the INPUT chain rejects all traffic.

$ sudo iptables -A INPUT -p tcp --destination-port 22 -j ACCEPT

$ sudo iptables -A INPUT -j REJECT

A quick review of the man page might be all you need from here on out to set up simple rules to

protect your laptop. Netfilter and iptables support many types of complex chains (rulesets) and

http://netfilter.org/

interactions. The complexity you need varies depending on whether you’re protecting a laptop you

use for browsing the web or protecting a web server you’ve deployed for the Internet to see.

Good luck updating chains from a remote shell. More often than not you’ll run into a conflicting rule

(or typo...) that shuts down your remote connection and leaves the system in a state that rejects all

incoming traffic. Should you mess up a chain and wish to restart from scratch, keep the following

command handy. Remember to rebuild your rulesets after flushing them—otherwise you may leave

the system unintentionally unprotected.

$ sudo iptables --flush INPUT

If you love Linux but find the iptables syntax frustrating, check out the Shorewall project at

http://shorewall.net. It keeps you on the command line, but with a more user-friendly interface to

managing rules.

Windows System Firewall
The Microsoft Windows operating system has evolved significantly over the past few decades. In its

early days the system exposed important services and sensitive information (like remote Registry

access) by default. Today, Microsoft has adapted the OS to a more hostile environment and has

learned from many of its mistakes in the past. One important feature it has included is a system

firewall.The interface for enabling and configuring the firewall is in the Control Panel, as shown in

Figure 11-3. Note that it allows you to define different trust levels based on your network location.

Since it’s likely a laptop will roam among several different networks during its lifetime, or perhaps

even daily, this interface helps you to determine when and what to share for a particular environment.

Figure 11-4 shows the basic options available to you for these different locations. Follow the

recommendations unless you have a compelling reason for disabling the firewall.

Snort: An Intrusion-Detection System
Firewalls block traffic that we know beforehand shouldn’t be traversing a protected network.

However, we have to let some traffic into the network, and, of course, traffic needs to go out. A

competent administrator creates a robust ruleset to prevent malicious traffic from bypassing a

firewall. A savvy administrator prepares for scenarios in which malicious traffic manages to bypass

the firewall. This is where network monitoring comes in.

Snort (www.snort.org) is a network monitoring tool that watches traffic for signs of malicious

activity (e.g., buffer overflows being executed against a service, command and control traffic from

malware), suspicious activity (e.g., port scans and service enumeration), and anything else that you

wish to look out for.

At its core, an intrusion-detection system (IDS) is a sniffer like tcpdump or Wireshark, but with

specialized filters that attempt to identify malicious activity. A good IDS can find anything from a

buffer overflow attack against an SSH server to the transmission of /etc/password files over FTP.

Network administrators place these systems where they can best monitor traffic, such as a point where

they can see all traffic through a firewall or see all traffic between network segments with different

security contexts (e.g., production servers and developer systems). The IDS examines packets,

looking for particular signatures or patterns that are associated with suspicious or prohibited activity.

The IDS then reports on all traffic that matches those signatures.

Snort is a robust IDS that runs on Unix-based and Windows systems. It is also completely free. In this

section, we focus on version 2.9.

Snort is one of the more complex tools covered in this book. In fact, entire books have been dedicated

solely to Snort. We’ll cover some of the basic concepts that make Snort a superior IDS. You can view

the online documentation at www.snort.org/docs/ for full details on configuration and usage.

Snort Rules: An Overview

Snort rules are similar to the kind of packet-filter expressions that you create in tcpdump or Wireshark.

They can match packets based on IP, ports, header data, flags, and packet contents. Snort has several

types of rules that affect how it handles traffic:

http://shorewall.net/
http://www.snort.org/
http://www.snort.org/docs/

• Alert rules Log packets whose characteristics match a predefined suspicious pattern (e.g., generated by a

common hacking tool, or contain a string indicative of a buffer overflow or web attack) or custom rules that

monitor packets you determine to be prohibited or undesirable on your network (e.g., file sharing, gaming, etc.).

• Pass rules Explicitly ignore packets. Traffic that matches these rules will not be logged.

• Log rules Record packets but do not generate rules. This would be useful for diagnosing network

problems, storing traffic for audits, or monitoring sensitive systems so that traffic can be analyzed in case a

compromise is detected.

• Activate rules Generate an alert for traffic that matches this rule’s trigger, then activate a subsequent

dynamic rule. (Until it is activated, a dynamic rule will not generate an alert even if traffic matches it.)

• Dynamic rules Triggered by activate rules. This enables you to chain rules together in a way that makes

inspection more efficient (don’t run rules needlessly) and more effective (create complex chains). These are great

mechanisms for gathering more information during an attack.

Snort comes with a standard ruleset that checks for such activity as Nmap stealth scans, vulnerability

exploits, attempted buffer overflows, anonymous FTP access, and much more.

By default, Snort checks the packet against alert rules first, followed by pass rules, and then log rules.

This setup is perfect for the administrator who is just learning Snort and plans on using the default

config file and ruleset. Snort’s default ruleset doesn’t include any pass rules or log rules. However,

running Snort without performing any kind of customization or configuration is usually a bad idea, as

you’ll no doubt be inundated with false positives.

As you become more familiar with the Snort rule syntax, you’ll be able to write rules to ignore certain

traffic. For example, imagine a network that has been receiving a flood of DNS queries forwarded to

its own DNS server from other DNS servers on the Internet. (In other words, the traffic was

legitimate, just arriving in spikes.) It may happen that Snort would falsely alert on the traffic as UDP

port scans and DNS probes. Obviously, it’s not helpful to clutter Snort’s logs with false positives.

Consequently, we could create a custom rule to handle this specific scenario. To do so, you could start

the rule with a variable definition called

Snort Rules Syntax

For details on the syntax of Snort rules, you should go to www.snort.org/snort-rules/.

This section provides a brief description of how rules are put together.

Basic Snort rules consist of two parts: the header and the options. The first part of the header tells Snort

what type of rule it is (such as alert, log, pass). The rest of the header indicates the protocol (ip, udp,

icmp, or tcp), a directional operator (either -> to specify source to destination or <> to specify

bidirectional), and the source and destination IP address and port. The source and destination IP address

can be written using the syntax aaa.bbb.ccc.ddd/yy, where yy is the number of network bits in the

netmask. This allows you to specify networks and single hosts in the same syntax (single hosts have a

netmask of 32 bits). To specify several addresses, you can put them in brackets and separate them with

commas, like this:

[192.168.1.0/24,192.168.2.4,192.168.2.10]

Port ranges can be specified using a colon (so that :1024 means all ports up to 1024, 1024: means 1024

and above, and 1024:6000 means ports 1024 to 6000).

Alternatively, you can use the keyword any to have all IP addresses and ports matched. You can also

use the exclamation mark (!) to negate the IP or port (for example,

1:1024 and !1025: would be equivalent).

The rule options contain such things as the alert message for that rule and the packet contents that

should be used to identify packets matching the rule. The options are always enclosed in parentheses

and follow the syntax keyword:value, with each option pair separated by a semicolon (and optional

whitespace before the value). Several keywords are available. Table 11-1 contains a sampling of the

more important keywords taken directly from the documentation.

http://www.snort.org/snort-rules/

Scanning for Web Vulnerabilities
Only a few kinds of web servers drive the Web’s traffic. Apache HTTP Server is the most

recognizable in the open source category, while Microsoft’s Internet Information Server (IIS) is the

most recognizable commercial one. The nginx server, also open source, is a rising star for web

administrators. All other web servers have mostly been left to the dustbin of web progress (for

example, the previous edition of this book mentioned the iPlanet server, something most readers have

probably never heard of nor encountered).

The web server is the most obvious component of a web application platform; something has to

deliver pages to web browsers. But the platform may also comprise data stores, load balancers, and

the programming framework used to write pages. There are even efforts such as Node.js

(http://nodejs.org/) to take a client-side language like JavaScript onto the server.

It’s a testament to the quality of web server development that very few high-impact vulnerabilities

have been reported for Apache, IIS, and nginx over the past few years. However, this doesn’t imply

that these servers will remain secure or continue to be configured correctly. A vulnerability scanner

contains a knowledge base of all vulns reported for different components of a web platform. It uses

this knowledge to probe a target for indicators that one of the vulns is present. A web application must

start out with a secure foundation.

You can use a web vulnerability scanner to test the basic security of a web application. Chapter 4

covers OpenVAS and Metasploit, which are scanners that check for the presence of known

vulnerabilities in web sites in addition to vulns in network devices and operating systems. This section

covers a web-specific scanner called Nikto. As you become more familiar with web security testing,

you might try other open source tools like w3af (http://w3af.org).

Nikto
Nikto, by Chris Sullo and David Lodge, is a Perl-based scanner that searches for known vulnerabilities

in common web applications, looks for the presence of common files that have the potential to leak

information about an application or its platform, and probes a site for indicators of common

misconfigurations. It is an outgrowth of the Whisker and LibWhisker tools created by Rain Forest

Puppy, which were based on his influential work on web security as documented in Phrack Issue 55

from 1999 (www .phrack.org/issues.html?issue=55&id=7#article).

Use Nikto for assessing the security of a web application’s deployment. The tool focuses on

identifying vulns in commercial and open source web application frameworks. It won’t be as helpful

for assessing the security of a custom web application. For example, it may tell you that a site uses

an outdated (and insecure) version of WordPress, but it won’t be able to tell you if the blogging

application you wrote from scratch is secure or not.

Implementation

Nikto is written in Perl, so it will run on any platform that Perl runs on. In practice, this means Nikto

will run on Windows and any of the Unix-based operating systems. Clone the Git repository from

https://github.com/sullo/nikto.git. You shouldn’t need to install any Perl libraries that aren’t already

present in a default installation.

Scanning Nikto is uncomplicated, but not unsophisticated. Use the -host option to start

scanning a single target for the presence of default files, pages that might expose sensitive information, or

pages with known vulnerabilities. The following example shows Nikto’s output when run against a

blogging site running on the open source WordPress framework:

Nikto Components Nikto uses the nikto.conf file for settings that may be used less often (and don’t

have a command-line option) or that apply to every scan (and would be annoying to have to set on the

command line every time). Review these settings to make sure they match values you desire. For

example, a trivial server configuration might reject any request with the word “Nikto” in the User-

Agent header—it wouldn’t make the server any more secure, but it would frustrate naive script kiddies

who don’t understand the tools they run.

http://nodejs.org/
http://w3af.org/
http://www.phrack.org/issues.html?issue=55&id=7#article
http://www.phrack.org/issues.html?issue=55&id=7#article
https://github.com/sullo/nikto.git
https://github.com/sullo/nikto.git

Nikto uses the files in the database subdirectory to determine what kinds of test it performs and how it

categorizes responses from a server. The most important file is the db_dictionary file that contains a

manifest of common directories found on web servers. These directories correspond to hierarchies from

common web applications, design patterns that developers typically use (e.g., /admin/), and locations

known to have files useful from a hacker’s perspective. Add (or remove) any entries you wish to tune

the time and comprehensiveness of a scan.

Running w3af

w3af has two user interfaces, the console user interface and the graphical user interface. This user

guide will focus on the console user interface where it’s easier to explain the framework’s features. To

fire up the console UI execute:

$./w3af_console ,w3af>>>

From this prompt you will be able to configure framework and plugin settings, launch scans and

ultimately exploit a vulnerability. At this point you can start typing commands. The first command you

have to learn is help

The main menu commands are explained in the help that is displayed above. The internals of every

menu will be seen later in this document. As you already noticed, the help command can take a

parameter, and if available, a detailed help for that command will be shown, e.g. help keys .

Other interesting things to notice about the console UI is the ability for tabbed completion (type ‘plu’

and then TAB) and the command history (after typing some commands, navigate the history with the

up and down arrows).

To enter a configuration menu, you just have to type it’s name and hit enter, you will see how the prompt

changes and you are now in that context:

w3af>>> http-settings

w3af/config:http-settings>>>

All the configuration menus provide the following commands:

• help

• view

• set

• back

To summarize, the view command is used to list all configurable parameters, with their values and a

description. The set command is used to change a value. Finally we can execute back or press

CTRL+C to return to the previous menu. A detailed help for every configuration parameter can be

obtained using help parameter

The http-settings and the misc-settings configuration menus are used to set system wide parameters

that are used by the framework. All the parameters have defaults and in most cases you can leave them

as they are. w3af was designed in a way that allows beginners to run it without having to learn a lot of

its internals.It is also flexible enough to be tuned by experts that know what they want and need to

change internal configuration parameters to fulfill their tasks.

HTTP Utilities
The following tools serve as workhorses for making connections over HTTP or HTTPS. Alone,

they do not find vulnerabilities or secure a system, but their functionality can be put to use to

extend the abilities of a web vulnerability scanner, peek into SSL traffic, or encrypt client/server

communication to protect it from network sniffers.

Curl
Where Netcat deserves bragging rights for being a flexible, all-purpose network tool, curl

deserves considerable respect as a flexible tool for HTTP connections. It consists of a command-

line tool (which is the focus of this section) and a high-performance, crossplatform, open source

library. Its home page, http://curl.haxx.se, contains links to source code, documentation, and

mailing lists. You’ll find that the curl mailing lists are helpful, active lists regardless of whether

you’re trying to understand the command line or using one of the library’s APIs.

Implementation
The curl command is a default tool on most Unix-based systems. If it’s not present, then it’s

likely available as a package for your system or you can install it from source.

To connect to a web site, specify the URL on the command line, like the following example:
$ curl http://antihackertoolkit.com

The power and helpfulness of curl is best demonstrated by the scripting you can build around

it. The curl command could be used to crawl a web site, repeat requests for a brute-force

guessing attack, or replay requests to exploit a vulnerability. Table 14-3 lists some of its most

useful options. Note that the curl command accepts a long (started by two dashes) and a short

(started by one dash) form for most of its options.

You’re less

likely to need

OpenSSL for web hacking because you can perform most of the necessary activities from a browser

or through an interactive proxy like ZAP (covered later in this chapter). However, one important use

of OpenSSL is to generate a certificate for an SSL/TLS service. The OpenSSL library provides a Perl

script (CA.pl) and a shell script (CA.sh) that automate the basic steps for creating a self-signed

certificate (cert). The following example provides a verbose description of the steps involved for

generating and signing certs.

The first step is to generate a Certificate Authority (CA) cert. The CA cert represents an ultimate

authority in terms of a cert’s validity. The act of signing another cert by the CA connotes that the

signed cert has been “approved” or “verified.” In other words, the CA attests that a cert should be

trusted (with the implication that you trust the CA). Use the req and ca actions to generate a cert and

establish it as your local CA:

Option Description

-H

--header

Sets a client request header. Use this to imitate many scenarios. For

example:

User-Agent: Mozilla/5.0 spoofs a particular browser. Referer:

http://localhost/admin bypasses poor authorization that checks

the Referer.

X-Forwarded-For: http://localhost/admin bypasses poor

authorization that checks a proxy header.
-b

--cookie

-c

--cookiejar

-b uses a file that contains cookies to send to the server. For example, -b

cookie.txt includes the contents of cookie.txt with all HTTP requests.

Cookies can also be specified on the command line in the following form:

-b ASPSESSIONID=INEIGNJCNDEECMNPCPOEEMNC;

-c uses a file that stores cookies as they are set by the server.

For example, -c cookies.txt holds every cookie from the server.

Cookies are important for bypassing form-based authentication and

spoofing sessions.

-d

--data

Submits data with a POST request. This includes form data or any other

data generated by the web application. For example, to set the form field

for a login page, use -d login=arha&passwd=tenar. This option is

useful for writing custom brute-force passwordguessing scripts. The real

advantage is that the requests are made with POST requests, which are

more tedious to craft with a tool such as Netcat.

Use the --data-ascii, --data-binary, or --dataurlencode

variant to affect how the data is encoded.

-G

--get

Forces the data sent via the --data option to be submitted with the HTTP

GET method instead of the default POST method.

-u

--user

Sets the credentials for server-based authentication. For example:

--user arha:tenar

http://curl.haxx.se/

Stunnel
OpenSSL is excellent for one-way SSL conversions. Unfortunately, you can run into situations in which

the client sends out HTTPS connections and cannot be downgraded to HTTP. In these cases, you need

a tool that can either decrypt SSL or sit between the client and server and watch traffic in clear text.

Stunnel provides this functionality. Install this tool with your system’s package manager or download

it from https:// www.stunnel.org.

You can also use stunnel to wrap SSL around any network service. For example, you could set up

stunnel to manage connections to an Internet Message Access Protocol (IMAP) service to provide

encrypted access to e-mail (you would also need stunnel to manage the client side as well). Fortunately,

modern operating systems and services recognize the importance of encrypting connections with

SSL/TLS. Stunnel is now needed less as a “patch” for plaintext services and more as a tool for

redirecting traffic in order to manipulate it for security testing.

Implementation

Stunnel has two major versions, 3 and 4. The majority of this section relates to the command-line

options for the stunnel 3 version because the command line tends to be easier to deal with in rapidly

changing environments and one-off testing of services. Check out the end of the section for

configuration differences in version 4, the biggest of which is its bias for relying on a configuration file

instead of command-line options to control its activity. Both versions provide the same capabilities, and

all of the following techniques can be applied to either version.

If you’re already familiar with stunnel version 3 command-line options, check out the Perl script

provided by the project at https://www.stunnel.org/downloads /stunnel3. The script wraps the new

command-line syntax with the options used by version 3.

SSL communications rely on certificates. The first thing you need is a valid PEM file that contains

encryption keys to use for the communications. Stunnel comes with a default file called stunnel.pem,

which it lets you define at compile time.

If you wish to use a different cert, use the following openssl command. This is slightly different from

the command covered in the previous “OpenSSL” section of this chapter. A notable difference is the

inclusion of the -nodes option, which skips the encryption of the cert’s private key.

$ openssl req -new -out stunnel.pem -keyout stunnel.pem -nodes -x509 \

> -days 365

...follow prompts...
$ openssl dhparam 2048 >> stunnel.pem

In the next section, we’ll provide this cert to stunnel with its -p option to enable stunnel to receive

SSL connections. Note that the command is going to complain if the file’s “world” permissions are

set. Suppress this complaint with the following command:

$ chmod o-rwx stunnel.pem

Intercept Traffic One use of stunnel is to intercept traffic by downgrading client connections

from HTTPS to HTTP, inspect or manipulate the traffic, and then upgrade the connection back from

HTTP to HTTPS for the server. The concept is similar to using an interactive proxy (see the upcoming

“Zed Attack Proxy” section) to be able to view the plaintext form of HTTPS traffic.

Run stunnel in normal daemon mode (-d). This mode accepts SSL traffic and outputs traffic in clear

text. The –f option forces stunnel to remain in the foreground. This is useful for watching connection

information and making sure the program is working. Stunnel is not an end-point program. In other

words, you need to specify a port on which the program listens (-d port) and a host and port to which

traffic is forwarded (-r host:port).

Instead of using both commands to forward traffic directly to the server, we could have a client (like a

web browser) connect to the listener on port 443 (the first example) and forward that plaintext traffic

over port 80 to the other listener on port 80 (the second example), which in turn would forward the

traffic over SSL/TLS to its final destination. In this way we can peek into an encrypted connection.

https://www.stunnel.org/
https://www.stunnel.org/
https://www.stunnel.org/downloads/stunnel3
https://www.stunnel.org/downloads/stunnel3
https://www.stunnel.org/downloads/stunnel3

Redirecting traffic through stunnel may also require spoofing the server’s IP address so that the client

connects to the first stunnel listener. Depending on the security configuration of the client, it may reject

a connection if the stunnel.pem cert is invalid. This problem can be solved if you can find a way to

install the stunnel.pem cert as a trusted cert or sign it with a CA cert and install the CA cert as a trusted

signer in the client. This is straightforward with desktop browsers, but it’s more difficult for mobile or

embedded devices.

Stunnel is a robust way to wrap SSL/TLS protection around an otherwise unencrypted service. Use the

-l option to specify the full path to a service daemon. Then launch stunnel (or create a service for it on

a Unix-based service manager like xinetd or rlinetd):

$ sudo stunnel3 -p stunnel.pem -f -d 443 -l /path/to/daemon

Most services natively support SSL/TLS connections. This is more useful for setting up redirects in

order to inspect traffic between a client and server. For example, some clients either don’t provide

HTTP proxy settings (otherwise you could use a tool like the Zed Attack Proxy discussed a bit later) or

run some protocol other than HTTP over the SSL/TLS connection. In these cases, it’s necessary to use

host spoofing tricks and redirection so that you can “downgrade” the client’s connection from SSL/TLS

in order to manipulate it, then “upgrade” the connection back to SSL/TLS when sending traffic on to

the server.

The client mode setting is needed when stunnel connects to another host. It controls

whether the remote service expects an SSL/TLS connection (client = yes) or

not (client = no).

If the path names correspond to the correct location of the certificate files, you’re ready to go.

Otherwise, change the paths and define the services you wish to use. Table 14-4 lists some additional

directives for the stunnel.conf file. This is not an exhaustive list, but it is representative of the most useful

directives for getting stunnel started and debugging problems.

The TIMEOUTxxx directives are useful for minimizing the impact of some kinds of denial of service

attacks that attempt to keep connections open for a long time or open lots of connections to exhaust

resources. They can also be increased or decreased depending on the expected latency of a connection.

These previous examples may seem familiar if you’ve read about Netcat in Chapter 7. The primary

difference is that stunnel establishes encrypted channels whereas Netcat just deals with “normal”

plaintext TCP connections. You’re less likely to need stunnel if you’re interacting with a web site from a

browser. However, it comes in handy for dealing with HTTP clients in embedded devices or clients that

use non-HTTP protocols.

Directive Description

Foreground Values: yes or no

Available only for Unix-based stunnel execution. It will print activity

to stderr, which is an excellent way to troubleshoot connectivity

problems.

TIMEOUTbusy Value: time in seconds

Time to wait for data. Available only as part of a specific service

definition.

TIMEOUTclose Value: time in seconds

Time to wait for close_notify socket messages. The stunnel

developers recommend a value of 0 when using the Internet Explorer

browser. Available only as part of a specific service definition.

TIMEOUTidle Value: time in seconds

Time to keep an idle connection before closing it. Available only as

part of a specific service definition.

 Table 14-4 Additional stunnel.conf Directives

Application Inspection
The previous tools in this chapter focused on the platform beneath the code that drives a web

application. The platform needs to start out secure so that it doesn’t weaken the code above. But the

platform is usually a small part of the application—at least from the end user’s perspective. A web

application’s platform may consist of tens of thousands of web servers connected to massive data stores,

but if it only exposes ports 80 and 443 to the user, and the application’s document root (the location of

its web pages) is locked down, then there’s very little of the platform for an attacker to target.

So, the attacker targets the application’s behavior instead. This is where we discover vulnerabilities that

attackers exploit with techniques like SQL injection, HTML injection (aka cross-site scripting), account

hijacking, logic flaws, and more. Many of these attacks require no tools other than a web browser. But

some tools make the process easier.

This section covers tools that assist with the manual analysis of and interaction with a web application.

For this section we care much less about whether the application is running on Apache or IIS, or whether

the source code is Ruby or Java. Knowing those details informs and influences some of the attacks that

we might try against the web application, but in this section we care more about how the web application

handles cookie values, or how it responds to different values for a URL parameter, or what kinds of

data it accepts from a form submission.

These tools help record, analyze, and manipulate the requests and responses to a web site in order to

see how securely it’s written. We’ll be focusing more on how to use each tool rather than how to find

specific kinds of vulnerabilities. But don’t worry, many web app vulns are easy to understand and even

easier to exploit. You can find many web security resources at http://deadliestwebattacks.com.

Zed Attack Proxy
The browser is as much a tool for hacking web applications as it is for interacting with them. Many web

application attacks require a meager knowledge of HTML and no other tool than a browser’s address

bar. Manipulating links is a primary way of testing a site’s security. But the browser alone is a

cumbersome attack platform for conducting security tests.

Zed Attack Proxy (ZAP) is a premier example of an interactive proxy. An interactive proxy provides

the means to inspect, alter, and manipulate web traffic in order to probe a web application for the

presence of vulns. ZAP does this and more. It is able to passively inspect traffic for indicators of poor

(and good!) security practices. It may also run active attacks against a web application, such as

automatically crawling pages or fuzzing parts of a request in order to elicit errors (or exploits) against

the site.

The ZAP project is part of the OWASP Foundation’s efforts to improve the knowledge, tools, and skills

related to web application security. The tool’s project page is at

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project. This tool is in fact a

resurrection of the defunct Paros Proxy that served web hackers well in the early 2000s. The

development home for ZAP is at https://code.google.com/p/zaproxy/.

You cannot effectively understand and explore web security without the capability provided by an

interactive proxy. You may never need a tenth of the features that ZAP provides, but you do need to

understand how a tool like this is used to hack web applications.

The Burp Proxy tool provides similar capabilities to Zed Attack Proxy. It is a commercial

tool available at http://portswigger.net/burp/proxy.html.

Installation
The easiest way to get started with ZAP is to download an installer for your operating system of choice.

ZAP is written in Java, so your experience in using it doesn’t noticeably change between systems. Some

developers have also started to extend ZAP with Python, which is also cross-platform. Web applications

are not tied to operating systems; it’s a good sign that web hacking tools are not either.

Following are the basic steps for downloading and building the latest source code.

Note that you’ll need to set up your environment correctly for building Java source code (e.g., class

files). ZAP requires a JDK (available from www.java.com) and the ant command (available from your

system’s package manager, or at http://ant.apache.org).

http://deadliestwebattacks.com/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://code.google.com/p/zaproxy/
http://portswigger.net/burp/proxy.html
http://www.java.com/
http://ant.apache.org/

$ svn co https://zaproxy.googlecode.com/svn/trunk zap

$ cd zap

$ cd build

$ ant

$ cd zap

$ sh zap.sh

ZAP has a relatively fast-paced development cycle.But it has also managed to maintain stability in the

trunk. You’re unlikely to run into problems using the latest version of the source code.

Sqlmap
SQL injection is a class of web security vulns and exploits that affects the datastore used by a web app.

The programming flaws that lead to SQL injection are similar to the ones that produce the kind of

HTML injection vulns we briefly covered in the previous “Zed Attack Proxy” section. A web

application takes a piece of data received from the browser (and therefore a value that can be

manipulated by an attacker) and uses string concatenation to piece together a database query (or snippet

of text in equivalent HTML injection scenarios) based on the received data, but the app neglects to

prevent the received data from changing the meaning of the SQL statement (or HTML page). That’s

the long-winded explanation; we’ll look at some clarifying examples using the sqlmap tool.

Sqlmap automates the detection and exploitation of SQL injection vulns. The project’s home page is

http://sqlmap.org. It brings together attack techniques that have been improving for more than a decade

and ties them to specific exploit methods for most of the possible SQL-based databases that a web app

might use.

The following examples demonstrate the basic way that SQL injection vulns occur within a web app

and a simple way they can be exploited. The examples include PHP code to show how the server

mishandles a request, but this vuln is not specific to PHP. It happens in any programming language in

which a developer constructs a SQL statement via string concatenation on user-supplied data that hasn’t

been properly validated.

To begin, recall the search link referenced in the “Zed Attack Proxy” section:

https://web.site/search?q=tardis+repair

When the web app receives the request, it might place the value of the “q” parameter into a database

query like the following. An important thing to notice is how the term is treated as a string within the

query by placing it within single quotes (i.e., apostrophe characters).

SELECT info FROM howto_guides WHERE topic = 'tardis repair';

Any results that match the search term would be returned in the web page. Now, consider what might

happen if the search term includes SQL syntax characters. The following link includes a terminating

single quote followed by a semicolon (which denotes the end of a SQL statement), followed by a

SQL comment delimiter (dashdash-space, which causes the SQL query interpreter to ignore whatever

follows the delimiter). Remember that most web servers will interpret the plus symbol as a space

character when it’s part of the URL. Use the percent encoding of %2b to represent a literal plus

symbol. https://web.site/search?q=tardis+repair';--+

The web app constructs a new SQL statement whose behavior is identical to the previous example, but

whose syntax has been modified:

SELECT info FROM howto_guides WHERE topic = 'tardis repair';-- ';

At this point we have a vulnerable web app. The next step might be to exploit the vulnerability by

extracting additional data into the statement’s original result set. The following link demonstrates

one way this might happen by using SQL’s UNION keyword to combine the results for “tardis

repair” with results from the database’s USERS table:
https://web.site/search?q=tardis+repair'+UNION+SELECT+password+FROM+USERS;--+

http://sqlmap.org/

Since the web app has done nothing to prevent this kind of attack, it builds a statement like the

following, the results of which would dump passwords alongside the “normal” results expected for this

query:

SELECT info FROM howto_guides WHERE topic = 'tardis repair' UNION SELECT password
FROM USERS;-- ';

And the reason the web app would construct a query like this is if its source code used string

concatenation. Again, this example uses PHP, but the vuln can be re-created in almost any

programming language used by web apps:

$table = 'howto_guides';

$sql = "SELECT info FROM {$table} "

 . "WHERE topic = '{$_GET['q']}';

In this PHP code, the SQL statement is built with two different variables. The $table variable is a

constant value that can’t be manipulated by a visitor to the web site. Such usage could be considered

safe, albeit ill-advised since it relies on a poor programming pattern. The web app takes the second

variable, $_GET['q'], directly from the “q” parameter of the link. This variable is completely under

the control of an attacker, which is how the string can be manipulated to contain arbitrary SQL

statements. The web app has failed to properly separate code (the grammar of the SQL query) from

data (the values to insert into the query’s grammar).

Password OpSec
We can’t control what happens to our passwords once they leave our phone, laptop, or other device. In

fact, we can rarely control what happens to them once they leave our fingertips and are typed on a

keyboard or touchscreen. But we can follow some basic Operations Security (OpSec) in choosing,

managing, and using passwords. The following list of recommendations is biased toward users of web

applications, but the principles should be applicable to using passwords in general:

• Keep your system up to date. This reduces your exposure to compromise by malware and

viruses.

• Do not use the unique password of your primary e-mail account for any other account you

create. Most web apps rely on e-mail for password reset and recovery mechanisms. E-mail accounts

are a prime target for theft. Losing access to your e-mail account (or unwittingly divulging the

account’s password to someone else) means not only losing contact with friends and family via that

account, but an attacker may be able to leverage the e-mail to access other accounts.

• Enable multifactor authentication whenever a web app offers support for it. This helps protect

your account from compromise even if your password is weak (and easily guessed) or disclosed (by a

server-side hack).

• Avoid entering your credentials on public or shared computers. The security of such systems

cannot be guaranteed and they are excellent targets for hackers to install keyloggers.

• Avoid authenticating to web apps when using public Wi-Fi networks. Or at least restrict your

activity to apps that use HTTPS for all communication. See Chapter 10 for reasons why this matters.

• Avoid any web site whose password recovery mechanism e-mails your original password

rather than a new, temporary one. Sending an e-mail with your original password means the site does

not hash passwords (against all recommended security practices) and its developers are ignorant of

secure programming.

• Choose a password that isn’t based on easily discoverable personal information such as

school names, demographic details, a favorite topic you always blog about, or pets. If you’re a pet,

don’t use any of this information about your human. On the Internet, no one knows you’re a dog.

Make sure they don’t know your password either.

• If you use your social media account (e.g., Facebook or Twitter) as the ID for other apps,

follow the same advice given for your e-mail password. Plus, always make sure the login prompt you

receive points to the correct domain for the social media site.

Application developers and system administrators bear different responsibilities for protecting

passwords. The majority of this chapter is predicated on the assumption that a password hash—or an

entire password store—has been compromised. Preventing such a compromise in the first place must

be a goal of secure application deployment. This entails efforts like keeping software updated with its

latest patches, using encrypted channels for communication, and establishing network monitoring to

enable quick reaction and analysis in the event of a compromise.

John the Ripper
John the Ripper (www.openwall.com/john/) remains one of the fastest, most versatile, and most popular

password crackers available. It supports password hashing schemes used by many systems, including

most Unix-based systems (like OpenBSD and various Linux distributions) and the various Windows

hashes, as well as proprietary password hashing functions used by several database and software

packages for user account management. John’s cracking modes include specialized wordlists, the ability

to customize the generation of guesses based on character type and placement (useful when targeting a

specific password policy), raw brute force, and statistically guided brute force that uses successfully

cracked passwords to influence future guesses. And John runs on just about any operating system.

Implementation
First, you need to obtain and compile John. The following examples use the John-1.7.9 version with

the “jumbo-7” patch. The “jumbo” patches include code from contributors who have added support

for more esoteric password file formats or hash algorithms. Download and extract the tarball. John

may be compiled on any Unix-based system or Windows. When you type the make command, the

compilation step will complain that you haven’t specified a target. Don’t worry; that’s okay.

$ tar zxvf john-1.7.9-jumbo-7.tar.gz

$ cd john-1.7.9-jumbo-7

$ cd src

$ make

John has hard-coded many compilation flags and optimization settings for dozens of specific operating

systems and CPU architectures. It should be easy to guess which is the most appropriate for your own

system. Plus, look for the “(best)” annotation for your system.

Cracking Passwords
John is compiled and awaits our command. Let’s crack a password. John automatically recognizes

common password formats extracted from operating system files like /etc/ shadow or dumped by

tools like pwdump (we’ll get to that tool in a moment). In practice, John supports close to 150

different hashing algorithms; you’ll find them listed by running the benchmark with the -test

option.The following example shows John’s ability to guess the correct format for password entries.

First, create a text file named windows.txt with the following two lines containing an entry for “Ged”

and “Arha.” They represent passwords taken from a Windows system.

THC-Hydra
THC-Hydra (aka simply Hydra) easily surpasses the majority of brute-force tools available on the

Internet for two reasons: it is fast, and it targets authentication mechanisms for several dozen protocols.

Its source code and documentation are available from https://www.thc.org/thc-hydra/. The Hacker’s

Choice web site (https://www .thc.org) contains many security tools, although some of them have not

been maintained for several years. Even so, its tools, papers, and information are informative.Compile

Hydra from source or look for it in your system’s package manager. It will compile under any Unix-

based system and Cygwin.

Implementation
Hydra compiles on BSD and Linux systems without a problem; the Cygwin and OS X environments

have been brought to equal par in the most current version. Follow the usual ./configure, make,

make install method for compiling source code. Once you have successfully compiled it, check

out the command-line arguments detailed in Table 15-2.

http://www.openwall.com/john/
https://www.thc.org/thc-hydra/
https://www.thc.org/
https://www.thc.org/
https://www.thc.org/

 Hydra Option Description

-R Restores a previous aborted/crashed session from the hydra

.restore file (by default this file is created in the directory from which Hydra was

executed).

-S Connects via SSL.

-s n Connects to port n instead of the service’s default port. -l name Uses name from

the command line or from each line of file as the -L file username portion of the credential.

-p password Uses password from the command line or from each line of file as -P file the

password portion of the credential.

-C file Loads user:password combinations from file. Each line contains one combination

separated by a colon.

 Table 15-2 Hydra Command-Line Options (continued)

 Hydra Option Description

-e nsr Also tests the login prompt for a null password (n), a password equal to the

username (s), or a password of the login name reversed (r).

 -M file Targets the hosts listed in each line of file instead of a single host.

-o file Writes a successful username and password combination to file instead of stdout.

 -f Exits after the first successful username and password

combination is discovered for the host. If multiple hosts are targeted (-M), then

Hydra will continue to run against other hosts until the first successful credentials

are found.

-t n Executes n parallel connects to the target service. The default is 16. The

performance gain from this option is affected by both your system’s resources and

the target’s resources.

-w n Waits no more than n seconds for a response from the service before assuming no

response will come.

 -v Reports verbose status information.

-V

 -4 Connects over IPv4 (-4) or IPv6 (-6).

-6

server Specifies the target’s IP address or hostname. For multiple targets, use the –M

option to load targets from a text file (with each target on a single line).

 service Specifies the target’s service to brute force.

 Table 15-2 Hydra Command-Line Options

The target is defined by the server and service arguments. The type of service can be any one of

the applications in the following list, which contains some of the more interesting services that Hydra

is able to brute force. Note that for several of the services, a port for SSL access has already been

defined. The first number in the parentheses is the service’s default port; the second number is the

service’s port over SSL. Make sure to use the –s option if the target service is listening on a different

port.

• cisco (23) Telnet prompt specific to Cisco devices when only a password is requested.

• cisco-enable (23) Entering the enable, or superuser, mode on a Cisco device. You must

already know the initial login password and supply it with the –m option and without the –l or –L

options (there is no prompt for the username). hydra –m access_password –P

password.lst 10.0.10.254 cisco-enable

• http, http-head, http-get (80,443) HTTP Basic Authentication schemes on the web

service. Note that this technique expects the server to send particular HTTP response codes;

otherwise, the accuracy of this module may suffer. Use the https version for SSL-enabled services.

• http-get-form, http-post-form (80,443) HTML login forms over HTTP. Specify the target

path with the -m option. Use the https version for SSL-enabled services. Run the following

command for instructions on specific usage: hydra -U http-post-form

• http-proxy (3128) Web proxies such as Squid.

• imap, imaps (143, 993) E-mail access.

• irc (194 or 6667, 6697) Chat software.

• mssql (1433) Microsoft SQL Server. Remember that SQL Server may use integrated

authentication. Try the default SQL accounts, such as sa, and Windows accounts.

• mysql (3306) MySQL database server.

• oracle-listener (1521) Oracle database server.

• pop3, pop3s (110, 995) E-mail access.

• postgres (5432) PostgreSQL database server.

• rdp (3389) Remote Desktop Protocol.

• smb/cifs (139 or 445) Windows SMB services such as file shares and IPC$ access.

• snmp (161 or 1993) UDP-based network management protocol.

• socks5 (1080) Proxy.

• ssh (22) Secure Shell, remote command-line administration.

• svn (3690) Source code versioning system.

• teamspeak (8767) Distributed voice chat system, often used by gamers.

• vnc (5900 and 5901) Remote administration for GUI environments.

Running Hydra is simple. The biggest problem you may encounter is the choice of username/password

combinations. Here is one example of targeting a Windows SMB service. If port 139 or 445 is open on

the target server and an error occurs, then the

Windows Server service might not be started—the brute-force attack will not work.

If you really do wish to have an optimum test, as opposed to an exhaustive test, then you may wish to

consider the –C option instead of supplying a file each for –L (users) and –P (passwords). The –C

option takes a single file as its argument. This file contains username and password combinations

separated by a colon (:). This is often a more efficient method for testing accounts because you can

populate the file with common default username/password combinations or combinations you expect

to be more likely to succeed (perhaps based on passwords cracked from a tool like John the Ripper).

Using this option reduces the number of unnecessary attempts when a username does not exist. This is

more useful for situations where you only wish to test for default passwords and the most common

passwords.

Do not forget to use the –e option when auditing your network’s services. The –e option turns on

testing for the special cases of no password (-e n) or a password equal to the username (-e s).

Specify an r (-e r) to submit the reverse of the login name as the service’s password.

Note that Hydra writes a state file (hydra.restore) to the current directory from which it is executed.

You can use the –R option to restart an interrupted scan. This also means that if you wish to run

concurrent scans against different servers or different services, then you should do so in different

directories. From a forensics perspective, the hydra.restore file might be a good addition to the list of

common “hacker” files to search for on suspect systems—just remember that a one-line change to the

source code can change this filename.

Hydra now also includes a GUI based on the open source GTK library. This version, called xHydra,

provides all of the functionality of the command line.

